Abstract
Molecular analysis, or genotyping, of genes involved in the expression of blood group antigens has been a standard strategy used in immunohaematology laboratories routinely. For the past ten years, next-generation sequencing (NGS), or second-generation sequencing, has become the reference method in genetics. Extensive study of distinct targets, large genomic regions, and even whole genome is henceforth possible by this approach at minimal cost. Blood group genotyping has thus taken advantage of this technological advent. A few preliminary studies have open the way to NGS in this field by studying one or several genes, in a wide range of samples (donors and patients) by using several different platforms. These works have helped in the identification of both the benefits and limitations of the technology. Other recently published studies have benefited from these preliminary data to improve the methodology, specificity and accuracy of output data. In parallel novel strategies, i.e. third-generation sequencing, which can sequence long DNA regions at the single-molecule level, have emerged and shown promise for the potential resolution of complex rearrangements involving genes of the Rh and MNS blood group systems respectively. As technological and methodological hurdles have been overcome, these approaches may be used in a clinical situation in a near future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.