Abstract

The RNA-dependent RNA polymerases (RDRs) play a key role in RNA silencing, heterochromatin formation and natural gene regulation. Here, a novel RDR gene was isolated from Nicotiana glutinosa, designated as NgRDR1. The full-length cDNA of NgRDR1 encodes a 1117-amino acid protein which harbors the five conserved regions in plant RDRs, including the most remarkable motif DbDGD (b is a bulky residue). Amino acid sequence alignment revealed that NgRDR1 exhibited a high degree of identity with other higher plant RDR genes. Five exons were detected in the genomic DNA sequence, and the fourth exon is 151bp, the location and the length of which are conserved among different plant species. From the phylogenetic tree constructed with different kinds of plant RDRs, it is determined that NgRDR1 falls into group I, and is closely associated with the dicotyledons RDRs. The analysis of the 5'-flanking region of NgRDR1 revealed a group of putative cis-acting elements. The results of expression analysis showed that the transcripts of NgRDR1 can be induced by biotic stresses, such as exogenous signaling molecules including salicylic acid (SA), SA analogues, hydrogen peroxide (H(2)O(2)), and methyl jasmonate (MeJA). Furthermore, NgRDR1 expression can be up-regulated by potato virus Y (PVY), tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV), but not by potato virus X (PVX). Besides, different kinds of fungi can also induce NgRDR1 expression. These results indicate that NgRDR1 may play an important role in response to biotic and abiotic stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call