Abstract

Development and progression of neurodegenerative disorders have, amongst other potential causes, been attributed to a disruption of iron regulatory mechanisms and iron accumulation. Excess extracellular iron may enter cells via nontraditional routes such as voltage-gated calcium channels and N-methyl-d-aspartate (NMDA) receptors leading to intracellular oxidative damage and ultimately mitochondrial failure. Nimodipine, an L-type calcium channel blocker has been shown to reduce iron-induced toxicity in neuronal and brain endothelial cells. Our current study investigates NGP1-01, a multimodal drug acting as an antagonist at both the NMDA receptor and the L-type calcium channel. Our previous studies support NGP1-01 as a promising neuroprotective agent in diseases involving calcium-related excitotoxicity. We demonstrate here that NGP1-01 (1 and 10μM) pretreatment abrogates the effects of iron overload in brain endothelial cells protecting cellular viability. Both concentrations of NGP1-01 were found to attenuate iron-induced reduction in cellular viability to a similar extent, and were statistically significant. To further verify the mechanism, the L-type calcium channel agonist FPL 64176 was administered to promote iron uptake. Addition of NGP1-01 dose-dependently reduced FPL 64176 stimulated uptake of iron. These data support further evaluation of NGP1-01 as a neuroprotective agent, not only in diseases associated with excitotoxicity, but also in those of iron overload.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.