Abstract

Autopsy results on patients and corresponding studies in nonhuman primates have revealed that autografts of adrenal medulla into the striatum, used as a treatment for Parkinson's disease, do not survive well. Because adrenal chromaffin cell viability may be limited by the low levels of available nerve growth factor (NGF) in the striatum, the present study was conducted to determine if transected peripheral nerve segments could provide sufficient levels of NGF to enhance chromaffin cell survival in vitro and in vivo. Aged female rhesus monkeys, rendered hemiparkinsonian by the drug MPTP (n-methyl-4-phenyl-1,2,3,6 tetrahydropyridine), received autografts into the striatum using a stereotactic approach, of either sural nerve or adrenal medulla, or cografts of adrenal medulla and sural nerve (three animals in each group). Cell cultures were established from tissue not used in the grafts. Adrenal chromaffin cells either cocultured with sural nerve segments or exposed to exogenous NGF differentiated into a neuronal phenotype. Chromaffin cell survival, when cografted with sural nerve into the striatum, was enhanced four- to eightfold from between 8000 and 18,000 surviving cells in grafts of adrenal tissue only up to 67,000 surviving chromaffin cells in cografts. In grafts of adrenal tissue only, the implant site consisted of an inflammatory focus. Surviving chromaffin cells, which could be identified by both chromogranin A and tyrosine hydroxylase staining, retained their endocrine phenotype. Cografted chromaffin cells exhibited multipolar neuritic processes and numerous chromaffin granules, and were also immunoreactive for tyrosine hydroxylase and chromogranin A. Blood vessels within the graft were fenestrated, indicating that the blood-brain barrier was not intact. Additionally, cografted chromaffin cells were observed in a postsynaptic relationship with axon terminals from an undetermined but presumably a host origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.