Abstract

Two signaling pathways, phosphoinositide 3-kinase (PI-3k)/Akt and Ras/MAPK, are major effectors triggered by nerve growth factor (NGF). Rac1, Cdc42 and GSK-3β are reported to be targets of PI-3k in the signal transduction for neurite outgrowth. Immediately after NGF was added, broad ruffles were observed temporarily around the periphery of PC12 cells prior to neurite growth. As PC12D cells are characterized by a very rapid extension of neurites in response to various agents, the signaling pathways described above were studied in relation to the NGF-induced formation of ruffles and outgrowth of neurites. Wortmannin, an Akt inhibitor (V), and GSK-3β inhibitor (SB425286) suppressed the neurite growth in NGF-treated cells, but not in dbcAMP-treated cells. The outgrowth of neurites induced by NGF but not by dbcAMP was inhibited with the expression of mutant Ras. But upon the expression of dominant-negative Rac1, cells often extended protrusions, incomplete neurites, lacking F-actin. Intact neurites were observed in cells with dominant-negative Cdc42. These results suggest that NGF-dependent neurite outgrowth occurs via a mechanism involving activation of the Ras/PI-3K/Akt/GSK-3β pathway, while dbcAMP-dependent neurite growth might be induced in a distinct manner. However, inhibitors for GSK-3β and PI-3k (wortmannin) did not suppress the NGF-dependent formation of ruffles. In addition, the formation of ruffles was not inhibited by the expression of mutant Ras. On the other hand, it was suppressed by the expression of dominant-negative Rac1 or Cdc42. These results suggest that the NGF-induced ruffling requires activation of Rac1 and Cdc42, but does not require Ras, PI-3k, Akt and GSK-3β. Taken together, the NGF-dependent formation of ruffles might not require Ras/PI-3k/Akt/GSK-3β, but these pathways might contribute to the formation of intact neurites due to combined actions including Rac1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.