Abstract

Cerebral ischemia induces damage of cholinergic terminals in the hippocampus, which preceded the delayed neuronal death (DND) of the CA1 pyramidal cells. We investigated the effects of nerve growth factor (NGF) on the cholinergic terminal damage after ischemia. Continuous NGF infusion (0.5 μg/7 days) into the lateral ventricle before and after 5 min ischemia prevented a decrease in choline acetyltransferase (ChAT)-immunoreactivity and disturbance of acetylcholine (ACh) release on the 4th day after ischemia, but not on day 7, i.e., NGF infusion caused delay in the progress of the cholinergic terminal damage. These findings show that the cholinergic terminal damage may result from deficiency of endogenous NGF in an ischemic brain. In addition, we investigated whether NGF would prevent the DND after ischemia. NGF infusion also caused delay in the progress of the DND until day 14. Our results suggested that the neuroprotective effect of NGF on the DND may be secondarily yielded by maintenance of communication between cholinergic terminal and the target CA1 cell, and that prevention of cholinergic terminal damage may be useful for the treatment of cerebrovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call