Abstract

Nerve growth factor (NGF) is required for the trophic maintenance of postnatal sympathetic neurons. A significant portion of the growth-promoting activity of NGF is from NGF-dependent phosphorylation of the heterologous receptor tyrosine kinase, Ret. We found that NGF applied selectively to distal axons of sympathetic neurons maintained in compartmentalized cultures activated Ret located in these distal axons. Inhibition of either proteasomal or lysosomal degradation pathways mimicked the effect of NGF on Ret activation. Likewise, NGF inhibited the degradation of Ret induced by glial cell line-derived neurotrophic factor-dependent activation, a process that requires ubiquitination and proteasomal degradation. NGF induced the accumulation of autophosphorylated Ret predominantly in the plasma membrane, in contrast to GDNF, which promoted the internalization of activated Ret. An accretion of monoubiquitinated, but not polyubiquitinated, Ret occurred in NGF-treated neurons, in contrast to glial cell line-derived neurotrophic factor that promoted the robust polyubiquitination of Ret. Thus, NGF stimulates Ret activity in mature sympathetic neurons by inhibiting the ongoing ubiquitin-mediated degradation of Ret before its internalization and polyubiquitination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call