Abstract

Communication between the vasculature and nervous system is important during embryogenesis but the molecular mechanisms mediating this are ill-defined. We evaluated the molecular mechanisms by which Nerve Growth Factor (NGF) and Brain-derived neurotrophic factor (BDNF) regulate VEGF production. NGF activation of TrkA causes a marked increase in VEGF secretion by neuronal cells. The NGF induced increase in VEGF is accompanied by an increase in HIF-1α. Pharmacologic inhibitors of the Trk tyrosine kinase, PI-3 kinase and mTOR paths prevent NGF stimulated increases in HIF-1α and VEGF. NGF induced increase in VEGF transcription is dependent on a hypoxia response element (HRE) in the VEGF promoter. Mutation of the HRE or siRNA mediated silencing of HIF-1α expression blocks NGF induced increases in VEGF transcription. In primary cultures of TrkA expressing neurons from dorsal root ganglion, NGF induces VEGF expression that is accompanied by increases in HIF-1α but not HIF-2α expression. In CGN neurons, BDNF induces VEGF that is dependent on induction of HIF-1α. Our study indicates that neurotrophin activation of Trk stimulates an increase in VEGF transcription that is mediated by induction of HIF-1α.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.