Abstract

NGC 4314 is an early-type barred galaxy containing a nuclear ring of recent star formation. We present CO(1-0) interferometer data of the bar and circumnuclear region with 2.3 x 2.2 arcsec spatial resolution and 13 km/s velocity resolution acquired at the Owens Valley Radio Observatory . These data reveal a clumpy circumnuclear ring of molecular gas. We also find a peak of CO inside the ring within 2 arcsec of the optical center that is not associated with massive star formation. We construct a rotation curve from these CO kinematic data and the mass model of Combes et al. (1992). Using this rotation curve, we have identified the location of orbital resonances in the galaxy. Assuming that the bar ends at corotation, the circumnuclear ring of star formation lies between two Inner Lindblad Resonances, while the nuclear stellar bar ends near the IILR. Deviations from circular motion are detected just beyond the CO and H-alpha ring, where the dust lanes along the leading edge of the bar intersect the nuclear ring. These non-circular motions along the minor axis correspond to radially inward streaming motions at speeds of 20 - 90 km/s and clearly show inflowing gas feeding an ILR ring. There are bright HII regions near the ends of this inflow region, perhaps indicating triggering of star formation by the inflow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call