Abstract

Stroke is the leading cause of adult disability. Spontaneous functional recovery occurs after ischemic stroke, but it is very limited. Therefore, it is urgent to find a strategy to promote functional recovery after stroke in clinical setting. Gray matter damage has received extensive attention owing to the important roles of the gray matter in synaptic plasticity, cognitive, and motor function. However, stroke also causes white matter damage, which accounts for half of the infarct volume and can be aggravated by blood brain barrier damage. Disruption of white matter integrity, which is characterized by death of oligodendrocytes (OLs), loss of myelin, and axonal injury, greatly contributes to impaired neurological function. Impaired proliferation and differentiation of OL precursor cell (OPC, NG2-glia cells) play an important role in limited functional recovery after ischemic stroke and inhibitor of differentiation 2 (ID2) is a key factor controlling NG2-glia cells differentiation. It has been reported that the number of NG2-glia cells in the peri-infarction area significantly increases after ischemic stroke and glial growth factor (GGF2) administration promotes the proliferation and differentiation of NG2-glia cells as well as functional recovery after spinal cord injury. On the basis of the important roles of GGF2 in functional recovery and those of ID2 in NG2-glia cell proliferation and differentiation, we propose that after binding with the ErBb receptor on the surface of NG2-glia cells, GGF2 promotes NG2-glia cell proliferation and differentiation, thereby repairing BBB and white matter integrity and promoting neural functional recovery after ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.