Abstract

Network resource virtualization emerged as the future of communication technology recently, and the advent of Software Define Network (SDN) and Network Function Virtualization (NFV) enables the realization of network resource virtualization. NFV virtualizes traditional physical middle-boxes that implement specific network functions. Since multiple network functions can be virtualized in a single server or data center, the network operator can save Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) through NFV. Since each customer demands different types of VNFs with various applications, the service requirements are different for all VNFs. Therefore, allocating multiple Virtual Network Functions(VNFs) to limited network resource requires efficient resource allocation. We propose an efficient resource allocation strategy of VNFs in a single server by employing mixed queuing network model while minimizing the customers' waiting time in the system. The problem is formulated as a convex problem. However, this problem is impossible to be solved because of the closed queuing network calculation. So we use an approximation algorithm to solve this problem. Numerical results of this model show performance metrics of mixed queuing network. Also, we could find that the approximate algorithm has a close optimal solution by comparing them with neighbor solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call