Abstract

Blockchain technology is used to support digital assets such as cryptocurrencies and tokens. Commonly, smart contracts are used to generate tokens on top of the blockchain network. There are two fundamental types of tokens: fungible and non-fungible (NFTs). This paper focuses on NFTs and offers a technique to spot plagiarism in NFT images. NFTs are information that is appended to files to produce distinctive signatures. It can be found in image files, real artifacts, literature published online, and various other digital media. Plagiarism and fraudulent NFT images are becoming a big concern for artists and customers. This paper proposes an efficient deep learning-based approach for NFT image plagiarism detection using the EfficientNet-B0 architecture and the Triplet Semi-Hard Loss function. We trained our model using a dataset of NFT images and evaluated its performance using several metrics, including loss and accuracy. The results showed that the EfficientNet-B0-based deep neural network with triplet semi-hard loss outperformed other models such as Resnet50, DenseNet, and MobileNetV2 in detecting plagiarized NFTs. The experimental results demonstrate sufficient to be implemented in various NFT marketplaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.