Abstract

AbstractExisting methods for player evaluation in American football rely heavily on proprietary data, are often not reproducible, lag behind those of other major sports, and are not interpretable in terms of game outcomes. We present four contributions to the study of football statistics to address these issues. First, we develop the R package nflscrapR to provide easy access to publicly available play-by-play data from the National Football League (NFL). Second, we introduce a novel multinomial logistic regression approach for estimating the expected points for each play. Third, we use the expected points as input into a generalized additive model for estimating the win probability for each play. Fourth, we introduce our nflWAR framework, using multilevel models to isolate the contributions of individual offensive skill players in terms of their wins above replacement (WAR). We assess the uncertainty in WAR through a resampling approach specifically designed for football, and we present results for the 2017 NFL season. We discuss how our reproducible WAR framework can be extended to estimate WAR for players at any position if researchers have data specifying the players on the field during each play. Finally, we discuss the potential implications of this work for NFL teams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.