Abstract

Radiotherapy has been used as an adjunctive local-control modality for high-risk neuroblastoma. However, relapse due to radioresistance affects the success of radiotherapy. Ascertaining the fractionated radiation (FIR) modulated molecular targets is imperative in targeted molecular therapy. Accordingly, we investigated the (i) expression of genes representing six functional pathways; (ii) NFkappaB DNA-binding activity and (iii) expression of radioresponsive molecules after single dose (10 Gy) radiation (SDR) and FIR (2 Gy x 5) in human neuroblastoma cells. Alterations in gene expression were analyzed using QPCR-profiling, NFkappaB activity using electrophoretic mobility shift assay (EMSA) and pIkappaBalpha using immunoblotting. Modulations in TNFalpha, IL-1alpha, pAKT, IAP1, IAP2, XIAP, survivin, MnSOD, BID, Bak, MyD88 and Vegfc were determined using quantitative real-time PCR (Q-PCR) and immunoblotting. Compared to SDR, FIR significantly induced the expression of 25 genes and completely suppressed another 30 genes. Furthermore, FIR induced NFkappaB-DNA-binding activity and IkappaBalpha phosphorylation. Similarly, we observed an induced expression of IAP1, IAP2, XIAP, Survivin, IL-1alpha, MnSOD, Bid, Bak, MyD88, TNFalpha and pAKT in cells exposed to FIR. The results of the study clearly show distinct differences in the molecular response of cells between SDR and FIR. We identified several potential targets confining to NFkappaB signaling cascade that may affect radio-resistance after FIR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.