Abstract

Purpose/aim: Activated coagulation and reduced fibrinolysis in alveolar compartment are an important characteristics in acute respiratory distress syndrome (ARDS). Alveolar epithelial cell type II (AECII) participates in regulating the intra-alveolar abnormalities of coagulation and fibrinolysis mainly through adjusting the productions of tissue factor (TF), plasminogen activator inhibitor (PAI)-1 and activated protein C (APC) in ARDS. NF-κB signal pathway may be involved in coagulation regulation in sepsis-induced ALI. The purpose of this study was to testify the hypothesis that NF-κB p65 (p65) knock-down would improve the abnormalities of coagulation and fibrinolysis mediated by lipopolysaccharide (LPS) stimulation in AECII. Materials and Methods: p65 gene knock-down in AECII was achieved by small interfering RNA (siRNA) transfection. Rat AECII (RLE-6TN) with or without p65 gene knock-down were stimulated by LPS for 24 hours. And then cytolysate was used for TF, PAI-1 expression examination, and supernatant was collected for TF, PAI-1 and PC concentrations determination. Activation of NF-κB canonical pathway was simultaneously checked by western-blotting, RT-PCR and immunofluorescence respectively. Results: TF, PAI-1 expressions in normal cells obviously increased under LPS stimulation with NF-κB canonical pathway activation represented by high levels of p65, p-p65, p-IκB with increased nuclear translocation of p-p65. Cells with NF-κB p65 knock-down, however, showed significant decreases in TF, PAI-1, p65, p-p65, p-IκB expressions following LPS stimulation with significant reduction in p-p65 nuclear translocation as compared to normal and siRNA control cells. The high concentrations of TF, PAI-1 and low level of APC in supernatant induced by LPS in normal cells were significantly reversed through p65 knock-down. Conclusions: The experimental findings demonstrate that NF-kB signaling pathway is involved in regulating the expressions of coagulation and fibrinolysis factors in LPS-stimulated AECII, which suggest that NF-kB signaling pathway may be a new target to correct intra-alveolar coagulation and fibrinolytic abnormalities in ARDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call