Abstract

Metastatic recurrence remains a major cause of colorectal cancer (CRC) mortality. In this study, we investigated the mechanistic role of nuclear factor of activated T cells 1 (NFATc1) in CRC metastasis. First, we explored the potential role of NFATc1 in CRC using bioinformatics and hypothesized that NFATc1 might play different roles at different stages of CRC development. Then, we examined the relative expression of NFATc1 in 25 CRC tissues and adjacent normal tissues, and further analyzed the correlation between NFATc1 expression levels and clinical stages in 120 CRC patients. The role of NFATc1 in CRC metastasis and the molecular mechanisms were investigated in both in vitro and in vivo models. Our results showed that the expression of NFATc1 was increased in metastatic CRC tissues and positively associated with clinical stages (stage I vs. stage II, III or IV) of CRC. Overexpression of NFATc1 promoted CRC cell migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, SNAI1 was verified as the direct transcriptional target of NFATc1 and interacted with SLUG to promote EMT. Remarkably, our lung and liver metastasis mouse model demonstrated that NFATc1 overexpression accelerated CRC metastasis, and treatment with FK506, a calcineurin-NFAT pathway inhibitor, could suppress CRC metastasis in vivo. Taken together, our findings suggest that NFATc1 could transcriptionally activate SNAI1, which in turn interacts with SLUG to mediate EMT to promote CRC metastasis. Thus, making NFATc1 a promising therapeutic target in the treatment of metastatic CRC.

Highlights

  • Metastatic recurrence remains a major cause of colorectal cancer (CRC) mortality

  • The results showed that nuclear factor of activated T cells 1 (NFATc1) expression was increased in metastatic CRC tissues and positively associated with clinical stages (Stage I vs. Stage II, III or IV) of CRC

  • Our lung and liver double metastasis mouse model demonstrated that NFATc1 overexpression accelerated CRC metastasis, and treatment with FK506, a calcineurin-nuclear factor of activated T cells (NFAT) pathway inhibitor, could suppress CRC metastasis in vivo

Read more

Summary

Methods

We examined the expression of NFATc1 in 140 cases of CRC tissues and 35 corresponding adjacent tissues, as well as analyzed the correlation between NFATc1 expression levels and clinical stages. The role of NFATc1 in CRC metastasis and the molecular mechanisms were investigated in both in vitro and in vivo models. Total RNA was isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Complementary DNA (cDNA) was synthesized by the PrimeScript RT Reagent Kit (TaKaRa, Osaka, Japan). Real-time PCR was conducted on an IQ5 instrument (Bio-Rad, CA, USA) using SYBR Green fluorescence signal detection assays (TaKaRa, Osaka, Japan) with primers (Table S1). The specific mRNA expression level was quantified by using the 2-∆∆CT method.

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.