Abstract

Bone homeostasis is a function of the constant balancing acts between osteoclasts and osteoblasts, regulated by numerous factors in cellular and molecular levels. Calcineurin-NFAT pathway plays critical roles in bone homeostasis by regulating many aspects of bone development and remodeling. NFATc1 is the master transcription factor of osteoclasts, acting downstream of RANKL (receptor activator of nuclear factor-κB ligand) to control osteoclastogenesis. NFATc1 also plays important role in osteoblastogenesis, its increased nuclear occupancy in osteoblasts causes osteopetrosis by regulating chemokine and Wnt pathways. Targeting NFAT pathway may provide therapeutic avenues for treating bony disorders.

Highlights

  • Bone homeostasis is a function of the constant balancing acts between osteoclasts and osteoblasts, regulated by numerous factors in cellular and molecular levels

  • Activation of the surface receptors leads to the activation of Phosphoinositide Phospholipase C (PLC) that catalyzes the generation of inositol-1,4,5-trisphosphate (IP3) which interacts with its receptor (IP3R) on the surface of the endoplasmic reticulum (ER), inducing efflux of calcium from the ER and the subsequent depletion of the store calcium

  • RANKL-RANK signaling stimulates NFATc1 to induce the expression of a number of genes within osteoclasts to activate differentiation of osteoclast leading to bone resorption and remodeling

Read more

Summary

Regulation of Osteoclasts and Osteoblasts by Key Molecular Networks

Osteoclasts are the multinucleated giant cells that decalcify the bone matrix and degrade collagens by performing acid decalcification and proteolytic degradation, while osteoblasts produce bone matrix protein and maintain mineralization to counterbalance the action of osteoclasts [1,2]. Bone homeostasis is such a micro-sculpting process regulated by the intricate interplay between these two opposing cell types that are derived from the different lineage: osteoclasts from myeloid precursors of hematopoietic stem cell, and osteoblasts from the multipotent mesenchymal progenitors of bone marrow [1,2] (Figure 1).

Target Genes
Regulation of NFAT Signaling Pathways
NFATc responsive genes
NFAT in Osteoblastogenesis
Findings
Role of calcineurin in osteoblast regulation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.