Abstract
NF1 loss confers chemoresistance in multiple cancers. However, the etiology remains largely unknown. Our study aimed to scrutinize the role of NF1 in chemoresistant ovarian cancer and its underlying mechanism. 4',6-diamidino-2-phenylindole staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, luciferase reporter assay, chromatin immunoprecipitation, Western blot, quantitative real-time-PCR and rescue experiments were performed to illustrate the antiapoptotic role of NF1 loss and its underlying mechanism. NF1-knockdown ovarian cells showed resistance to cisplatin-induced apoptosis. Furthermore, NF1 regulated MCL1 expression at protein level. Further dissections suggested that miR-142-5p was regulated by NF1 via its promoter and targeted MCL1. Consistently, miR-142-5p mimic and si-MCL1 can attenuate the antiapoptotic effect of NF1 knockdown. NF1 knockdown endowed ovarian cells with resistance to cisplatin-induced apoptosis by targeting MCL1 via miR-142-5p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.