Abstract
Neurofibromatosis type I (NF1) is a common autosomal dominant disorder with a broad array of clinical manifestations, including benign and malignant tumors, osseous dysplasias, and characteristic cutaneous findings. In addition, NF1 patients have an increased incidence of cardiovascular diseases, including obstructive vascular disorders. In animal models, endothelial expression of the disease gene, NF1, is critical for normal heart development. However, the pathogeneses of the more common vascular disorders are not well characterized. To examine the role of NF1 in vascular smooth muscle, we generated mice with homozygous loss of the murine homolog Nf1 in smooth muscle (Nf1smKO). These mice develop and breed normally. However, in response to vascular injury, they display a marked intimal hyperproliferation and abnormal activation of mitogen-activated protein kinase, a downstream effector of Ras. Vascular smooth muscle cells cultured from these mice also display enhanced proliferation and mitogen-activated protein kinase activity. Smooth muscle expression of the NF1 Ras-regulatory domain (GTPase activating protein-related domain) rescues intimal hyperplasia in Nf1smKO mice and normalizes vascular smooth muscle cell Ras effector activity and proliferation in vitro, similar to blockade of downstream effectors of Ras. In this in vivo model of NF1 obstructive vascular disease, we have shown that Nf1 regulation of Ras plays a critical role in vascular smooth muscle proliferation after injury. These results suggest opportunities for targeted therapeutics in the prevention and treatment of NF1-related vascular disease and in the treatment of neointimal proliferation in other settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.