Abstract

The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.

Highlights

  • Breast cancer is the leading cause of cancer death among women worldwide

  • We evaluated the dose-response of DHMEQ in the cell lines used in this study through a cell viability assay (WST1 kit, Roche) and an nuclear factor-κB (NF-κB)/ p65-luciferase reporter assay (S1 and S2 Figs, respectively)

  • As our experiments indicated that NF-κB/p65 is important for the cell migratory and invasive properties of breast cancer cells (Figs 1 and 2), we questioned whether NF-κB/p65 inhibition would alter epithelial-to-mesenchymal transition (EMT)-related gene expression

Read more

Summary

Introduction

Breast cancer is the leading cause of cancer death among women worldwide. According to GLOBOCAN, this neoplasia is responsible for 522,000 deaths in women each year [1]. Late diagnosis increases the risk of cancer cells spreading from the primary tumor to neighboring tissues and distant organs in a process known as metastasis. Almost all deaths are attributed to metastasis, which is responsible for 90% of deaths from solid tumors [2]. Metastasis involves sequential and interrelated steps: cancer cells develop an invasive growth, PLOS ONE | DOI:10.1371/journal.pone.0169622. Metastasis involves sequential and interrelated steps: cancer cells develop an invasive growth, PLOS ONE | DOI:10.1371/journal.pone.0169622 January 20, 2017

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call