Abstract

Interaction of the neural cell adhesion molecule (N-CAM) with astrocytes activates a transcription factor, NF-kappaB, that mediates inflammatory responses after neural injury. Here we describe intracellular signaling events that link N-CAM binding to NF-kappaB-mediated transcription. Addition of the third immunoglobulin domain of N-CAM (Ig III), which mimics the activity of intact N-CAM, or of cytokines (interleukin-1beta or tumor necrosis factor-alpha), increased transcription from an NF-kappaB-responsive luciferase reporter gene construct that had been transiently transfected into neonatal rat forebrain astrocytes. NF-kappaB activity induced by Ig III or cytokines was decreased by inhibition of nonreceptor protein tyrosine kinases (PTKs), phospholipase C, protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CaMKII), or oxidative stress. Inhibition of PKC blocked nuclear translocation of NF-kappaB protein while binding of NF-kappaB to DNA was decreased by modulation of redox homeostasis. In contrast, inhibition of CaMKII and nonreceptor PTKs altered neither nuclear translocation nor DNA binding, suggesting that these kinases affect NF-kappaB transactivation. A number of agents that inhibit NF-kappaB activation in other cell types did not affect activation in astrocytes. These findings suggest that activation of NF-kappaB by N-CAM and cytokines in astrocytes involves multiple signals that differentially affect NF-kappaB nuclear translocation, DNA binding, and transactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.