Abstract

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by thrombofibrotic obstruction of proximal pulmonary arteries. The cellular and molecular mechanisms underlying the pathogenesis remain incompletely understood, although we recently evidenced the potential involvement of the inflammatory marker C-reactive protein (CRP). We aimed to investigate the intracellular mechanisms induced by CRP in proximal pulmonary arterial endothelial cells (PAEC). PAEC were isolated from vascular material obtained during pulmonary endarterectomy. RNA was extracted from CRP-stimulated PAEC, and first-stand cDNA was generated. A RT(2) profiler PCR Array was used to evaluate the expression of 84 key genes related to NF-κB-mediated signal transduction. CRP-induced NF-κB activation was studied. The effects of pyrrolidine-dithio-carbamate ammonium (PDTC), an inhibitor of the NF-κB pathway, were investigated on CRP-induced adhesion of monocytes to PAEC, adhesion molecule expression, endothelin-1 (ET-1), interleukin-6 (IL-6), and von Willebrand factor (vWF) secretion. Compared with nonstimulated PAEC, serotonin receptor 2B was downregulated by 25%, inhibitor of NF-κB kinase subunit epsilon (IKBKE) by 30%, and toll-like receptor-4 and -6 by 18 and 39%, respectively, in CRP-stimulated PAEC. The transcription factor FOS was threefold upregulated. CRP induced RelA/NF-κBp65 phosphorylation. PDTC dose dependently inhibited the adhesion of monocytes to CRP-stimulated PAEC. PDTC also inhibited the CRP-induced expression of ICAM-1 at the surface of PAEC. PDTC impaired the secretion of ET-1 by 18% and tended to inhibit the secretion of IL-6 by CRP-stimulated PAEC by 46%. PDTC did not inhibit the CRP-induced secretion of vWF. These results suggest an involvement of the NF-κB pathway in mediating different effects of CRP on proximal CTEPH-PAEC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.