Abstract

The performance of Neyman-Pearson detection of correlated stochastic signals using noisy observations is investigated via the error exponent for the miss probability with a fixed level. Using the state-space structure of the signal and observation model, a closed-form expression for the error exponent is derived, and the connection between the asymptotic behavior of the optimal detector and that of the Kalman filter is established. The properties of the error exponent are investigated for the scalar case. It is shown that the error exponent has distinct characteristics with respect to correlation strength: for signal-to-noise ratio (SNR) > 1 the error exponent decreases monotonically as the correlation becomes stronger, whereas for SNR < 1 there is an optimal correlation that maximizes the error exponent for a given SNR

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call