Abstract

We present the calculation of next-to-leading-order electroweak corrections to W-boson pair production at the LHC, taking off-shell effects of the W bosons and their leptonic decays into account in the framework of the so-called double-pole approximation. In detail, the lowest-order cross section and the photonic bremsstrahlung are based on full matrix elements with four-fermion final states, but the virtual one-loop corrections are approximated by the leading contributions of a systematic expansion about the resonance poles of the two W bosons. This expansion classifies the virtual corrections into factorizable and non-factorizable corrections, the calculation of which is described in detail. Corrections induced by photons in the initial state, i.e. photon-photon and quark-photon collision channels, are included and based on complete matrix elements as well. Our numerical results, which are presented for realistic acceptance cuts applied to the W-boson decay products, qualitatively confirm recent results obtained for on-shell W bosons and reveal electroweak corrections of the size of tens of percent in the TeV range of transverse momenta and invariant masses. In general, photon-photon and quark-photon induced contributions amount to 5-10% of the full differential result. Compared to previous predictions based on stable W bosons electroweak corrections, however, can change by several percent because of realistic cuts on the W-boson decay products and corrections to the decays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call