Abstract

Synchrotron X-ray absorption near-edge structure (XANES) spectroscopy studies have been carried out on the electronic and crystal structure environments around the Al atom in Na+β-alumina and in two β-aluminas with Na+exchanged by Li+and Rb+. The aim is to define the type of interaction, if any, existing between the Al located in the `spinel block' and the fast-conducting cations in the `conduction plane'. Na+β′′-alumina has also been studied for comparison. All β-alumina spectra differ from that of α-alumina (corundum) by showing additional features due to the presence of tetrahedral Al. Moreover, they all show a much greater degree of local disorder. There are definite, but small, interactions between tetrahedral Al (and, possibly, also octahedral Al) in the `spinel block' and the Na+and Rb+cations in the `conduction plane'; Na+and Rb+β-aluminas have similar AlK-edge XANES features, but with intensities that change in relation to the weight of the `conduction plane' atom. Despite differences in composition and structure, Na+β′′-alumina shows the same behaviour, thus confirming the substantial similarity of the Al local environments. Li+-exchanged β-alumina has an AlK-edge XANES spectrum that apparently differs from all others, but actually conveys the same basic information. Indeed, interaction between Al and Li is much greater than in any other β-alumina because Li+moves laterally off the `conduction plane' to become close to a facing tetrahedral Al, and strongly interacts with it. Thus, this study also draws attention to the fact that β-aluminas react differently to alkali exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.