Abstract
The increasing precision of cosmological datasets is opening up new opportunities to test predictions from cosmic inflation. Here we study the impact of high precision constraints on the primordial power spectrum and show how a new generation of observations can provide impressive new tests of the slow-roll inflation paradigm, as well as produce significant discriminating power among different slow-roll models. In particular, we consider next-generation measurements of the Cosmic Microwave Background (CMB) temperature anisotropies and (especially) polarization, as well as new Lyman-$\alpha$ measurements that could become practical in the near future. We emphasize relationships between the slope of the power spectrum and its first derivative that are nearly universal among existing slow-roll inflationary models, and show how these relationships can be tested on several scales with new observations. Among other things, our results give additional motivation for an all-out effort to measure CMB polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.