Abstract

Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.Graphic abstract

Highlights

  • Surgical mesh implants are generally defined as flexible and thin flat sheets [1] that are commonly used to provide additional support to a weakened tissue [2]

  • Having noticed the improvements reported in the treatment of hernia, in 1970s meshes were introduced for the management of pelvic floor dysfunctions (PFDs), including pelvic organ prolapse (POP) and stress urinary incontinence (SUI), with the first urogynaecological mesh approved by the US Food and Drug Administration (FDA) only 20 years ago [5]

  • guided bone regeneration (GBR) meshes need different features with respect to those employed in hernia repair, mainly osteoinduction, which is the ability to recruit mesenchymal stem cells (MSCs) and influence their differentiation into osteoblasts, and osteoconduction, which is the ability of the mesh to guide bone tissue formation [8]

Read more

Summary

Introduction

Surgical mesh implants are generally defined as flexible and thin flat sheets [1] that are commonly used to provide additional support to a weakened tissue [2]. They have been developed as an alternative to biological prostheses, aiming to overcome the limitations related to their use, such as the possibility to develop infections, unpredictable mechanical properties and the high risk associated with tissue harvesting procedures [3, 5] Their employment is linked to a vast number of post-operative complications, with infection the most common one in hernia [3], PFDs [5], GBR [7] and breast reconstruction (BR) [10]. Concerning meshes employed in PFDs, several restrictions have been imposed on their use by FDA and by the National Health Service (NHS) in UK, due to the substantial amount of side effects related to their use These issues, in turn led to an important decrease in the number of mesh-based surgical procedures (from 13,990 in 2008 to 7245 in 2016 for SUI and from 3073 in 2008 to 2680 in 2016 for POP) [12] and, in some countries, to their complete ban [13, 14]. Insights about current regulatory considerations and the potential further research holds, in order to advance current clinical practice, are provided

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.