Abstract

Spam emails and phishing attacks continue to pose significant challenges to email users worldwide, necessitating advanced techniques for their efficient detection and classification. In this paper, we address the persistent challenges of spam emails and phishing attacks by introducing a cutting-edge approach to email filtering. Our methodology revolves around harnessing the capabilities of advanced language models, particularly the state-of-the-art GPT-4 Large Language Model (LLM), along with BERT and RoBERTa Natural Language Processing (NLP) models. Through meticulous fine-tuning tailored for spam classification tasks, we aim to surpass the limitations of traditional spam detection systems, such as Convolutional Neural Networks (CNNs). Through an extensive literature review, experimentation, and evaluation, we demonstrate the effectiveness of our approach in accurately identifying spam and phishing emails while minimizing false positives. Our methodology showcases the potential of fine-tuning LLMs for specialized tasks like spam classification, offering enhanced protection against evolving spam and phishing attacks. This research contributes to the advancement of spam filtering techniques and lays the groundwork for robust email security systems in the face of increasingly sophisticated threats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.