Abstract

BackgroundAs one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; however, the molecular processes underlying this phenomenon remain unclear. Moso bamboo (Phyllostachys heterocycla cv. Pubescens) internodes from four different developmental stages and three different internodes within the same stage were used in our study to investigate the molecular processes at the transcriptome and post-transcriptome level.ResultsOur anatomical observations indicated the development of culms was dominated by cell division in the initial stages and by cell elongation in the middle and late stages. The four major endogenous hormones appeared to actively promote culm development. Using next-generation sequencing-based RNA-Seq, mRNA and microRNA expression profiling technology, we produced a transcriptome and post-transcriptome in possession of a large fraction of annotated Moso bamboo genes, and provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top. Several key pathways such as environmental adaptation, signal transduction, translation, transport and many metabolisms were identified as involved in the rapid elongation of bamboo culms.ConclusionsThis is the first report on the temporal and spatial transcriptome and gene expression and microRNA profiling in a developing bamboo culms. In addition to gaining more insight into the unique growth characteristics of bamboo, we provide a good case study to analyze gene, microRNA expression and profiling of non-model plant species using high-throughput short-read sequencing. Also, we demonstrate that the integrated analysis of our multi-omics data, including transcriptome, post-transcriptome, proteome, yield more complete representations and additional biological insights, especially the complex dynamic processes occurring in Moso bamboo culms.

Highlights

  • As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; the molecular processes underlying this phenomenon remain unclear

  • Anatomical and endogenous hormone variation at different developmental stages of internodes To better understand the anatomical structure of the culms, transverse and longitudinal sections of culms from the defined development stages were observed under a microscope

  • We provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top

Read more

Summary

Introduction

As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; the molecular processes underlying this phenomenon remain unclear. With the advent of second-generation sequencing-based technologies such as RNA-Seq and Digital Gene Expression (DGE), it is possible to measure a genome-wide dynamic range of expression in an unbiased manner. These technologies have a high sensitivity and reproducibility compared with existing technologies (e.g. DNA microarrays, cDNA or EST sequencing) [33,34], and will undoubtedly lead to novel insights into plant development and biotic and abiotic stress responses

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call