Abstract

Desmoplastic melanomas (DMs) are often challenging to diagnose and ancillary tests, such as immunohistochemistry, have limitations. One challenge is distinguishing DM from benign desmoplastic melanocytic neoplasms. In this study, we explored the utility of next-generation sequencing data in the diagnosis of DMs versus desmoplastic Spitz nevi (DSN) and desmoplastic nevi (DN). We sequenced 47 cases and retrieved 12 additional previously sequenced clinical cases from our dermatopathology database. The 59 total cases were comprised of 21 DMs, 25 DSN, and 13 DN. The DMs had the highest tumor mutation burden at 22 mutations/megabase (m/Mb) versus the DSN (6m/Mb) and DN (8m/Mb). Truncating mutations in NF1 resulting in a loss-of-function were exclusive to the DM cohort, identified in 8/21 (38%) cases. Importantly, missense mutations in NF1 were nonspecific and seen with similar frequency in the different cohorts. Other mutations exclusive to the DMs included truncating mutations in TP53 , CDKN2A , and ARID2 . Among the DSN, 17/25 (68%) had an HRAS mutation or receptor tyrosine kinase fusion consistent with other Spitz tumors. Two cases in the DN cohort had missense mutations in BRAF without additional progression mutations and 2 other cases had mutations in GNAQ , supporting a diagnosis of a sclerosing blue nevus. The remainder of the DN had nonspecific mutations in various signaling pathways with few progression mutations. Overall, our study provides preliminary data that next-generation sequencing data may have the potential to serve as an ancillary diagnostic tool to help differentiate malignant and benign desmoplastic melanocytic neoplasms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call