Abstract

The development of organic semiconductors (OSCs) applicable to organic field-effect transistors (OFETs) is crucial to realizing printed and flexible electronics, such as flexible displays and low-priced identification tags. OSCs for printed and flexible electronics must meet several prerequisites: (1) high chemical stability for use without special care, (2) charge carrier mobility exceeding 10 cm2/Vs for several applications, (3) appropriate solubility in organic solvents for solution processes, (4) high thermal durability for device fabrications and applications, and (5) a simple synthetic route for large-scale production. Previously reported OSCs do not meet all the requirements simultaneously, which has motivated intensive development of OSCs for future printed and flexible electronics applications. The author and collaborators developed state-of-the-art OSCs based on bent-shaped π-electron cores (π-cores) that satisfy the requirements for printed semiconductor devices. In this focused review, the chemistry and device engineering are introduced with respect to sulfur-bridged V-shaped and N-shaped π-cores among a series of bent-shaped π-cores. The development of organic semiconductors (OSCs) applicable to organic field-effect transistors is crucial to printed and flexible electronics. OSCs must meet several prerequisites: 1) high chemical stability, 2) charge carrier mobility exceeding 10 cm2/Vs, 3) appropriate solubility, and 4) high thermal durability. The author and collaborators developed state-of-the-art OSCs based on bent-shaped π-electron cores (π-cores) that satisfy the requirements for printed semiconductor devices. In this focused review, the chemistry and device engineering are introduced with respect to sulfur-bridged V-shaped and N-shaped π-cores among a series of bent-shaped π-cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call