Abstract

This paper provides research on the enhanced NextGen ADS-B reception method and its performance in laboratory and flight tests. It sheds the light on end-to-end reception techniques to comply with key requirements. ADS-B has emerged as among the most intriguing avionics for both researchers and companies since the launch of NextGen in 2009. ADS-B provides authorities with a mechanism for use in continuously monitoring the position and track of an airplane using periodic and independent broadcast messages that transmit Global Navigation Satellite System (GNSS) position information. The enhanced pulse detection technique is used to detect and validated preamble pulses. Besides the utilization of multiple amplitude samples technique not only improve bit and confidence declaration accuracy but also make it capable of deploying error detection/correction algorithms which are two aspects of enhanced Extended Squitter reception. In addition, applying a slow attack automatic gain control (AGC) algorithm improves system sensitivity and performance. The implementation is done in MATLAB Simulink and C++. Software Defined Radio (SDR) module, BladeRF, is used programable platform for the communication system. Subsequently, the lab experimental and flight test results show that when applying these strategies in a real environment, significant performance is achievable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.