Abstract

Lithium ion batteries are utilized in a range of applications including grid support and powering consumer electronics, medical devices, and electric vehicles. Advocacy for, as well as public and private investment in hybrid cars and electric vehicles has resulted in a surge in research and development (R&D) to create more powerful and cost effective lithium ion batteries. This high level of interest has also led to rapid expansion of battery manufacture capacity and has resulted in the over-capacity and fragmentation of the industry. Due to the disjointed quality of the lithium-ion battery industry, opportunities for collaboration and growth, resulting from numerous innovations throughout the supply chain, are overlooked. [1] Although range anxiety is often portrayed as the primary reason electric vehicle adoption is not growing more rapidly by the general population, the cost of vehicles is actually the larger issue. At present, the battery pack is the highest cost component driving the price of EVs. A year-long study was conducted by NextEnergy to obtain a better understanding of the size, scope, and supply chain dynamics of the lithium ion battery and next-generation energy storage systems industries. One major objective of the study was to better understand and define areas of opportunity for cost reduction, the results of which are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.