Abstract

One of the most challenging open problems in heavy quarkonium physics is the double charm production in e+e- annihilation at B factories. The measured cross section of e+e- --> J/psi + eta(c) is much larger than leading order (LO) theoretical predictions. With the nonrelativistic QCD factorization formalism, we calculate the next-to-leading order (NLO) QCD correction to this process. Taking all one loop self-energy, triangle, box, and pentagon diagrams into account, and factoring the Coulomb-singular term into the cc bound state wave function, we get an ultraviolet and infrared finite correction to the cross section of e+e- --> J/psi + eta(c) at sqrt[s] = 10:6 GeV. We find that the NLO QCD correction can substantially enhance the cross section with a K factor (the ratio of NLO to LO) of about 1.8-2.1; hence, it greatly reduces the large discrepancy between theory and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.