Abstract

We discuss recent advancements in structural biology methods for investigating sites of protein-protein interactions. We will inform readers outside the field of structural biology about techniques beyond crystallography, and how these different technologies can be utilized for drug development. Advancements in cryo-electron microscopy (cryoEM) and micro-electron diffraction (microED) may change how we view atomic resolution structural biology, such that well-ordered macrocrystals of protein complexes are not required for interface identification. However, some drug discovery applications, such as lead peptide compound generation, may not require atomic resolution; mass spectrometry techniques can provide an expedited path to generation of lead compounds. New crosslinking compounds, more user-friendly data analysis, and novel protocols such as protein painting can advance drug discovery programs, even in the absence of atomic resolution structural data. Finally, artificial intelligence and machine learning methods, while never truly replacing experimental methods, may provide rational ways to stratify potential druggable regions identified with mass spectrometry into higher and lower priority candidates. Electron diffraction of nanocrystals combines the benefits of both x-ray diffraction and cryoEM, and may prove to be the next generation of atomic resolution protein-protein interface identification. However, in situations such as peptide drug discovery, mass spectrometry techniques supported by advancements in computational methods will likely prove sufficient to support drug discovery efforts. In addition, these methods can be significantly faster than any crystallographic or cryoEM methods for identification of interacting regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call