Abstract

Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system.

Highlights

  • With the revolution in the socioeconomic milieu of the modern era, there has been a dramatic change in occupation, lifestyle, and nutrition of the world population affecting global health and wellbeing

  • The data generated by Encyclopedia of DNA Elements Consortium (ENCODE) has enabled scientist to assign biochemical functions for nearly 80% of the genome, to the regions lying outside the coding regions and provided statistically important linkage between causative variants and different disease types

  • High-throughput genomic technologies such as latest microarrays, next-generation sequencing (NGS), epigenomics studies and ENCODE results are introducing new paradigms in genomic medicine as well as deciphering the effect of environmental factors on disease development and progression through a new emerging field in omics technology known as Exposomics [53,54]

Read more

Summary

Introduction

With the revolution in the socioeconomic milieu of the modern era, there has been a dramatic change in occupation, lifestyle, and nutrition of the world population affecting global health and wellbeing. The alarming rise of cancers and other metabolism-associated pathologies such as hypertension, diabetes, cardiovascular ailments, etc., reflects a disparity between our diet, lifestyle, and thrifty genetic background [1]. Most of these diseases are among a group of devastating common health problems afflicting populations worldwide. States is tested for between 29 and 50 treatable genetic ailments through a public health program called newborn screening [12].These recent trends along with the constant increase in the number of loci contributing to genetic diseases will encourage routine use of -omics tools in future medical practice. NGS ( Generation Sequencing) is going to prove a pivot for CRISPR-Cas 9 system since NGS methods are known to provide highly-accurate DNA sequence data and, will pave the way for gene therapies for many genetic diseases

Cancer Genome Profiling and the 40 Year War
Upcoming Age of Personal Genome Sequencing
Epigenetic
The ENCODE Project
Precision Medicine and Public Healthcare
Findings
Conclusions and Future Challenges
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call