Abstract

BackgroundEncephalitis is a severe neurological syndrome usually caused by viruses. Despite significant progress in diagnostic techniques, the causative agent remains unidentified in the majority of cases. The aim of the present study was to test an alternative approach for the detection of putative pathogens in encephalitis using next-generation sequencing (NGS). MethodsRNA was extracted from cerebrospinal fluid (CSF) from a 60-year-old male patient with encephalitis and subjected to isothermal linear nucleic acid amplification (Ribo-SPIA, NuGen) followed by next-generation sequencing using MiSeq (Illumina) system and metagenomics data analysis. ResultsThe sequencing run yielded 1,578,856 reads overall and 2579 reads matched human herpesvirus I (HHV-1) genome; the presence of this pathogen in CSF was confirmed by specific PCR. In subsequent experiments we found that the DNAse I treatment, while lowering the background of host-derived sequences, lowered the number of detectable HHV-1 sequences by a factor of 4. Furthermore, we found that the routine extraction of total RNA by the Chomczynski method could be used for identification of both DNA and RNA pathogens in typical clinical settings, as it results in retention of a significant amount of DNA. ConclusionIn summary, it seems that NGS preceded by nucleic acid amplification could supplement currently used diagnostic methods in encephalitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.