Abstract

The wide application of next-generation sequencing (NGS), mainly through whole genome, exome and transcriptome sequencing, provides a high-resolution and global view of the cancer genome. Coupled with powerful bioinformatics tools, NGS promises to revolutionize cancer research, diagnosis and therapy. In this paper, we review the recent advances in NGS-based cancer genomic research as well as clinical application, summarize the current integrative oncogenomic projects, resources and computational algorithms, and discuss the challenge and future directions in the research and clinical application of cancer genomic sequencing.

Highlights

  • Sanger sequencing has dominated the genomic research for the past two decades and achieved a number of significant accomplishments including the completion of human genome sequence, which made the identification of single gene disorders and the detection of targeted somatic mutation for clinical molecular diagnostics possible [1,2]

  • Despite Sanger sequencing's accomplishments, researchers are demanding for faster and more economical sequencing, which has led to the emergence of “next-generation” sequencing technologies (NGS)

  • Cancer research In the last several years, many NGS-based studies have been carried out to provide a comprehensive molecular characterization of cancers, to identify novel genetic alterations contributing to oncogenesis, cancer progression and metastasis, and to study tumor complexity, heterogeneity and evolution

Read more

Summary

Introduction

Sanger sequencing has dominated the genomic research for the past two decades and achieved a number of significant accomplishments including the completion of human genome sequence, which made the identification of single gene disorders and the detection of targeted somatic mutation for clinical molecular diagnostics possible [1,2]. The application of NGS, mainly through whole-genome (WGS) and whole-exome technologies (WES), has produced an explosion in the context and complexity of cancer genomic alterations, including point mutations, small insertions or deletions, copy number alternations and structural variations. By comparing these alterations to matched normal samples, researchers have been able to distinguish two categories of variants: somatic and germ line. Cancer research In the last several years, many NGS-based studies have been carried out to provide a comprehensive molecular characterization of cancers, to identify novel genetic alterations contributing to oncogenesis, cancer progression and metastasis, and to study tumor complexity, heterogeneity and evolution. The information gained from these studies may help with drug development and explain the resistance of certain treatments

Methods and resources
14. Cancer Genome Atlas Research Network
26. Swanton C
Findings
90. Eisenstein M
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call