Abstract

Although targeted therapy has emerged as an effective treatment strategy for non-small cell lung cancer (NSCLC), some patients cannot benefit from such therapy due to the limited number of therapeutic targets. The present study aimed to identify mutated genes associated with clinicopathological characteristics and prognosis and to screen for mutations that are not concurrent with applicable drug target sites in patients with NSCLC. Tumor tissue and blood samples were obtained from 97 patients with NSCLC. A lung cancer-specific panel of 55 genes was established and analyzed using next-generation sequencing (NGS). The results obtained from the clinical cohort were compared with the NSCLC dataset from The Cancer Genome Atlas (TCGA). Subsequently, 25 driver genes were identified by taking the intersection of the 55 lung-cancer-specific genes with three databases, namely, the Catalog of Somatic Mutations in Cancer database, the Network of Cancer Genes database and Vogelstein's list. Functional annotation and protein-protein interaction analysis were conducted on these 25 driver genes. The χ2 test and logistic regression were used to evaluate the association between mutations in the 25 driver genes and the clinicopathological characteristics of 97 patients, and phosphatase and tensin homolog (PTEN) and kirsten rat sarcoma viral oncogene homolog (KRAS) were associated with stage at diagnosis and sex, respectively, while epidermal growth factor receptor (EGFR) was associated with sex, stage at diagnosis, metastasis, CEA and CYFRA21-1. Moreover, the association between the 25 driver gene mutations and overall survival were examined using Cox regression analysis. Age and Notch homolog 2 (NOTCH2) mutations were independent prognostic factors in TCGA dataset. The correlations between statistically significant mutations in EGFR, KRAS, PTEN and NOTCH2 were further examined, both in the clinical data and TCGA dataset. There was a negative correlation between EGFR and NOTCH2 mutations (correlation coefficient, −0.078; P=0.027). Thus, the present study highlights the importance of NOTCH2 mutations and might provide novel therapeutic options for patients with NSCLC who do not harbor EGFR mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.