Abstract

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) constitute the second most prevalent muscular dystrophy, with large deletions or duplications accounting for 66% of cases. No effective treatment exists for DMD/BMD. At present, genetic diagnosis serves as the foundation for gene therapy treatments. In this study, a comprehensive molecular investigation was conducted. The subjects diagnosed with DMD/BMD were initially examined using multiplex ligation-dependent probe amplification (MLPA) technology. The negative MLPA results were analyzed further using next-generation sequencing (NGS) technology. The MLPA detected 201 deletions (65.9%) and 20 duplications (6.6%) along the dystrophin gene among the 305 Iranian patients examined. The deletion of exon 52 in the amenable skipping subgroup was associated with an earlier onset age and a more severe phenotype. Twenty-one of the small mutations found in 58 MLPA-negative patients were novel. The most prevalent variants were nonsense variants (46.5%), frameshift variants (31%), splicing variants (6.9%), missense variants (10.4%), and synonymous mutations (5.1%). Our results demonstrate that MLPA and NGS can be effective diagnostic tools for very young patients with a single exon deletion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call