Abstract

Whole exome and transcriptome sequencing (WES and RNAseq) technologies are able to provide a comprehensive analysis of the genomic aberrations acquired by malignant cells, of their synergistic effects and functional consequences. In particular, RNAseq enables the detection of gene fusions originating from rare chromosomal translocations that have been involved in the pathogenesis of Acute Myeloid Leukemia (AML).We performed WES and RNAseq of AML patients to identify novel genetic abnormalities playing a causative role in leukemia development.We collected bone marrow or peripheral blood samples of 31 patients. Sequencing was performed using the Illumina Hiseq2000 platform. WES raw data were analysed with Whole-Exome sequencing Pipeline web tool for variants detection (WEP). The presence of gene fusions was assessed in RNAseq data with deFuse and Chimerascan. Selected genes fusions and variants were validated by Sanger sequencing.By RNAseq we identified a rare gene fusion transcript involving the BCL11B gene, which been previously suggested to play an oncogenic role in AML. The gene encodes for a zinc-finger protein participating to chromatin remodelling and regulating the differentiation and apoptosis of hematopoietic cells. The fusion was identified in a patient with poorly differentiated leukemia phenotype and unfavourable karyotypic abnormalities: 46,XX, t(2;14)(q21;q32), t(11;12)(p15;q22), who received standard chemotherapy, underwent allogeneic bone marrow transplantation and is currently in complete remission. Differently from previous data, the BCL11B translocation was associated neither with FLT3-ITD nor DNMT3A mutations. WES analysis revealed mutations in the TET2 and WTAP genes, which are known to act as co-players in the leukemic transformation. The exome data of our AML cohort identified neither INDELs nor nonsynonymous mutations in the BCL11Bgene, suggesting that the oncogenic function of BCL11B is activated by chromosomal translocations. Gene expression profiling showed a 4-fold upregulation of BCL11B transcript in the patient’s blasts, compared to 53 AML samples with no chromosomal aberrations in the 14q32 region, according to cytogenetic analysis. The increased expression of BCL11B was associated with an upregulation of potential targets including the antiapoptotic protein SPP1.Our data suggest that chromosomal translocations involving the BCL11B gene are rare events in AML and associate with somatic mutations in the malignant transformation of myeloid lineage cells, potentially by altering the differentiation and apoptotic processes. Future studies will investigate putative fusion partners of BCL11Band elucidate the biological consequences of its upregulation in AML pathogenesis. The results highlight the molecular heterogeneity of AML and the need for high-resolution sequencing analysis of leukemic samples at diagnosis in order to tailor personalized therapies.Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi). DisclosuresMartinelli:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.