Abstract

The rapid development and deployment of 5G/mm-Wave technologies for communication, sensing and energy harvesting applications have been on the rise. Consequently, the need for low-cost, scalable, agile and compact RF modules has become more prominent than ever. This paper presents a review of recent efforts in utilizing additive manufacturing techniques such as inkjet printing to sustainably accelerate the massive deployment of 5G/mm-Wave. First, a novel flexible and massively scalable multiple-input, multiple-output (MIMO) tile-based phased array enabled by additively manufactured microstrip-to-microstrip transitions is presented. Next, a novel Rotman-Based harmonic mmID tag for Ultra-Long-Range localization is presented. Finally, low-power, low-cost mm-Wave backscattering modules for localization and orientation sensing are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call