Abstract

Because of their ecological representativeness, invertebrates are commonly employed as test organisms in ecotoxicological assessment; however, to date, biomarkers employed for these species were the result of a direct transposition from vertebrates, despite deep evolutionary divergence. To gain efficiency in the diagnostics of ecosystem health, specific biomarkers must be developed. In this sense, next-generation proteomics enables the specific identification of proteins involved in key physiological functions or defense mechanisms, which are responsive to ecotoxicological challenges. However, the analytical investment required restricts use in biomarker discovery. Routine biomarker validation and assays rely on more conventional mass spectrometers. Here, we describe how proteomics remains a challenge for ecotoxicological test organisms because of the lack of appropriate protein sequences databases, thus restricting the analysis on conserved and ubiquitous proteins. These limits and some strategies used to overcome them are discussed. These new tools, such as proteogenomics and targeted proteomics, should result in new biomarkers specific to relevant environmental organisms and applicable to routine ecotoxicological assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.