Abstract

Cyclic poly-2-ethyl-2-oxazoline (PEOXA) ligands for superparamagnetic Fe3 O4 nanoparticles (NPs) generate ultra-dense and highly compact shells, providing enhanced colloidal stability and bio-inertness in physiological media. When linear brush shells fail in providing colloidal stabilization to NPs, the cyclic ones assure long lasting dispersions. While the thermally induced dehydration of linear PEOXA shells cause irreversible aggregation of the NPs, the collapse and subsequent rehydration of similarly grafted cyclic brushes allow the full recovery of individually dispersed NPs. Although linear ligands are densely grafted onto Fe3 O4 cores, a small plasma protein such as bovine serum albumin (BSA) still physisorbs within their shells. In contrast, the impenetrable entropic shield provided by cyclic brushes efficiently prevents nonspecific interaction with proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.