Abstract

The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer-detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.