Abstract

The global supercapacitor market has been growing rapidly during the past decade. Today, virtually all commercial devices use activated carbon. In this work, it is shown that laser treatment of activated carbon electrodes results in the formation of microchannels that can connect the internal pores of activated carbon with the surrounding electrolyte. These microchannels serve as electrolyte reservoirs that in turn shorten the ion diffusion distance and enable better interaction between the electrode surfaces and electrolyte ions. The capacitance can be further increased through fast and reversible redox reactions on the electrode surface using a redox‐active electrolyte, enabling the operation of a symmetric device at 2.0 V, much higher than the thermodynamic decompostion voltage of water. This simple approach can alleviate the low energy density of supercapacitors which has limited the widespread use of this technology. This work represents a clear advancement in the processing of activated carbon electrodes toward the next‐generation of low‐cost supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call