Abstract

We present a weaker convergence analysis of Newton’s method than in Kantorovich and Akilov (1964), Meyer (1987), Potra and Ptak (1984), Rheinboldt (1978), Traub (1964) on a generalized Banach space setting to approximate a locally unique zero of an operator. This way we extend the applicability of Newton’s method. Moreover, we obtain under the same conditions in the semilocal case weaker sufficient convergence criteria; tighter error bounds on the distances involved and an at least as precise information on the location of the solution. In the local case we obtain a larger radius of convergence and higher error estimates on the distances involved. Numerical examples illustrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.