Abstract

This paper aims to address a new version of Newton’s method for solving constrained generalized equations. This method can be seen as a combination of the classical Newton’s method applied to generalized equations with a procedure to obtain a feasible inexact projection. Using the contraction mapping principle, we establish a local analysis of the proposed method under appropriate assumptions, namely metric regularity or strong metric regularity and Lipschitz continuity. Metric regularity is assumed to guarantee that the method generates a sequence that converges to a solution. Under strong metric regularity, we show the uniqueness of the solution in a suitable neighborhood, and that all sequences starting in this neighborhood converge to this solution. We also require the assumption of Lipschitz continuity to establish a linear or superlinear convergence rate for the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call