Abstract
One kind of the L-average Lipschitz condition is introduced to covariant derivatives of sections on Riemannian manifolds. A convergence criterion of Newton's method and the radii of the uniqueness balls of the singular points for sections on Riemannian manifolds, which is independent of the curvatures, are established under the assumption that the covariant derivatives of the sections satisfy this kind of the L-average Lipschitz condition. Some applications to special cases including Kantorovich's condition and the γ-condition as well as Smale's α-theory are provided. In particular, the result due to Ferreira and Svaiter [Kantorovich's Theorem on Newton's method in Riemannian manifolds, J. Complexity 18 (2002) 304–329] is extended while the results due to Dedieu Priouret, Malajovich [Newton's method on Riemannian manifolds: covariant alpha theory, IMA J. Numer. Anal. 23 (2003) 395–419] are improved significantly. Moreover, the corresponding results due to Alvarez, Bolter, Munier [A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math. to appear] for vector fields and mappings on Riemannian manifolds are also extended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.