Abstract

Symmetric Grothendieck polynomials are inhomogeneous versions of Schur polynomials that arise in combinatorial K-theory. A polynomial has saturated Newton polytope (SNP) if every lattice point in the polytope is an exponent vector. We show that the Newton polytopes of these Grothendieck polynomials and their homogeneous components have SNP. Moreover, the Newton polytope of each homogeneous component is a permutahedron. This addresses recent conjectures of C. Monical–N. Tokcan–A. Yong and of A. Fink–K. Mészáros–A. St. Dizier in this special case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.